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This paper deals with the function projective synchronization of two complex dynamic networks with unknown sector nonlinear
input, multiple time-varying delay couplings, model uncertainty, and external interferences. Based on Lyapunov stability theory
and inequality transformation method, the robust adaptive synchronization controller is designed, by which the drive and
response systems can achieve synchronization according to the function scaling factor. Different from some existing studies on
nonlinear system with sector nonlinear input, this paper studies the synchronization of two complex dynamic networks when
the boundary of sector nonlinear input is unknown. The controller does not include the boundary value of the sector
nonlinear input and the time delay term, so it is more practical and relatively easy to implement. The corresponding
simulation examples demonstrate the effectiveness of the proposed scheme.

1. Introduction

There are all kinds of complex systems in nature world. These
complex systems can be seen as networks, such as Internet,
power grid, communication networks, transportation net-
works, ecological networks, and social networks. The dynamic
behavior of complex networks affects almost every aspect of
our lives. Among many researches on complex networks, syn-
chronization research is one of the most important branches.
So far, many types of synchronization have been investigated,
such as complete synchronization [1, 2], antisynchronization
[3], exponential synchronization [4–6], quasisynchronization
[7], lag synchronization [8, 9], combined synchronization
[10], projection synchronization [11], and function projection
synchronization [12–14]. Function projection synchroniza-
tion is a general synchronization form, which means that the
driving system and the response system can be synchronized
according to a certain function proportional relationship.
The complete synchronization, antisynchronization, and pro-

jection synchronization are all its exceptional cases. Function
projection synchronization has attracted widespread attention
because of its implied application in information science and
secure communication [15, 16].

It is well known that various time delays are unavoidable
in actual engineering applications. The time delay may
destroy the dynamic characteristics and decrease the stability
of the system, which is extremely detrimental to the control
system [17–19]. Multiple time-varying delay couplings mean
that multiple different time-varying delays exist in the com-
plex network. The description of multiple time-varying delay
couplings is a general description of time delay, and the con-
stant time-delay couplings and single time-varying delay
couplings are its special circumstances. The synchronization
researches of complex networks with multiple time-varying
delay couplings are more realistic and representative [20,
21]. Zhang et al. [22] researched the synchronization of
uncertain complex networks with time-varying node delay
and multiple time-varying coupling delays via the adaptive
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control. In [23], the authors researched the synchronization
in nonlinear complex networks with multiple time-varying
delays. Wang et al. [24] studied the lag synchronization
between two coupled complex networks with multiple
time-varying delays via the adaptive pinning control. Zhao
et al. [25] studied the synchronization issue of uncertain
complex networks with multiple time-varying delays. Lu
et al. [26] established a robust adaptive synchronization
scheme for general complex networks with multiple time-
varying coupling delays and uncertainties. Guan et al. [27]
studied the synchronization of complex networks with sys-
tem delay and multiple time-varying coupling delays via
impulsive distributed control.

In the actual control system, the backlash, friction, dead
zone, and hysteresis will cause the nonlinearity of the control
input, which lead to system instability or control perfor-
mance degeneration [28–34]. Therefore, the synchronization
researches of complex networks with input nonlinearity are
meaningful. Sector nonlinear input is one type of the nonlin-
ear input, which means that the system input is in a fan-
shaped area. Sector nonlinear input represents a large type
of input nonlinearity. Many scholars have studied the con-
trol of nonlinear systems with sector nonlinear input. Boulk-
roune and Msaad [35] researched the adaptive variable-
structure control of uncertain chaotic MIMO systems with
both sector nonlinearities and dead-zones. Fang et al. [36]
researched the modified projective synchronization of cha-
otic systems with sector nonlinearities input. Boubellouta
et al. [37] achieved synchronization for a class of
fractional-order chaotic systems with sector nonlinearities.
Wang and Liu [38] researched the sliding mode control of
the master-slave chaotic systems with sector nonlinear input.
Yang et al. [39] addressed an adaptive two-stage sliding
mode control to realize the synchronization for a class of n
-dimensional nonlinear systems with sector nonlinearity
input. Although the researches on sector nonlinear input
have achieved certain results, most existing studies mainly
focus on a single system rather than complex networks.
Recently, Fang et al. [40] studied the modified function pro-
jective synchronization of complex dynamic networks with
sector nonlinear input. In the controller design, it is assumed
that the range of the sector nonlinear input is known. How-
ever, it is difficult to determine the exact boundary value of
the sector nonlinear input. Once the restricted boundary of
the control input is unknown, the controller designed in
[40] is no longer applicable. How to realize function projec-
tive synchronization of complex dynamic networks under
unknown sector nonlinear input is a challenging research
topic.

Based on the results of previous researches, the function
projective synchronization for a class of complex dynamic
networks with unknown sector nonlinear input, multiple
time-varying delay couplings, model uncertainty, and exter-
nal interferences is studied in this paper. Through the
designed adaptive controller, two complex dynamic net-
works can realize synchronization according to the corre-
sponding function scaling factor. Compared with the
existing research results, the contributions of this paper are
(a) the complex network model includes the input nonline-

arity, multiple time-varying delay couplings, model uncer-
tainty, and external interferences, which is a more general
model. (b) Many of the existing studies are concerned with
synchronization between complex networks and single sys-
tems. This paper studies the synchronization between two
complex networks, which is more complex and general. (c)
Different from known sector nonlinear inputs in previous
studies, this paper investigates the function projective syn-
chronization of complex dynamic networks with unknown
sector inputs. The boundary value of the sector nonlinear
input and the delay term is not needed in controller design,
so it is relatively easy to implement in practical engineering.
(d) Function projective synchronization is a more general
synchronization form. The controller in this paper can also
realize complete synchronization, antisynchronization, and
projective synchronization of complex dynamic networks.

2. Model Description

In this article, a type of complex dynamic networks with
unknown sector nonlinear input, multiple time-varying
delay couplings, model uncertainty, and external interfer-
ences is described as the drive system:

_xi tð Þ = f i xi tð Þð Þ + Fi xi tð Þð Þθi + 〠
m−1

l=0
cl tð Þ〠

N

j=1
alijΓlxj t − τl tð Þð Þ + dvi tð Þ

= f i xi tð Þð Þ + Fi xi tð Þð Þθi + c0 tð Þ〠
N

j=1
a0ijΓ0xj t − τ0 tð Þð Þ

+ c1 tð Þ〠
N

j=1
a1ijΓ1xj t − τ1 tð Þð Þ+⋯

+cm−1 tð Þ〠
N

j=1
am−1
ij Γm−1xj t − τm−1 tð Þð Þ + dvi tð Þ,

ð1Þ

the corresponding response system is

_yi tð Þ = gi yi tð Þð Þ + Gi yi tð Þð Þηi + 〠
m−1

l=0
cl tð Þ〠

N

j=1
alijΓlyj t − τl tð Þð Þ

+ dsi tð Þ + ϕi ui tð Þð Þ

= gi yi tð Þð Þ + Gi yi tð Þð Þηi + c0 tð Þ〠
N

j=1
a0ijΓ0yj t − τ0 tð Þð Þ

+ c1 tð Þ〠
N

j=1
a1ijΓ1yj t − τ1 tð Þð Þ+⋯

+cm−1 tð Þ〠
N

j=1
am−1
ij Γm−1yj t − τm−1 tð Þð Þ + dsi tð Þ + ϕi ui tð Þð Þ,

ð2Þ

where xiðtÞ = ðxi1ðtÞ, xi2ðtÞ,⋯, xinðtÞÞT , i = 1, 2,⋯,N is the
state vector of the ith node in the drive system, yiðtÞ =
ðyi1ðtÞ, yi2ðtÞ,⋯, yinðtÞÞT , i = 1, 2,⋯,N is the state vector of
the ith node in the response system. f ið×Þ, gið×ÞÎRn are the
continuous nonlinear function vectors, Rn denotes the n
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-dimensional vector space on the real number field R, θi, ηi
∈ Rw are unknown w-dimensional constant parameter vec-
tor, Fið⋅Þ,Gið⋅Þ ∈ Rn×w are the continuous nonlinear function
matrices, Rn×w denotes the n ×w order matrix on the real
number field R. dvi ðtÞ and dsiðtÞ are the disturbances. The
complex network is divided into subnetworks by τlðtÞ, τlðt
Þ ≥ 0, ðl = 0, 1,⋯,m − 1Þ is the different time-varying delays,
and especially τ0ðtÞ = 0 means that the coupling delay is 0;
clðtÞ is the coupling strength; Γl is the inner coupling matrix;
Al = ðalijÞN×N

is weight configuration matrix, representing
the topological structure of the network. If nodes i and jðj
≠ iÞ are connected, then, alij ≠ 0. If nodes i and jðj ≠ iÞ have
no connection, then. alij = alji = 0: The diagonal elements of

the matrix Al are defined as alii = −∑N
j=1, j≠ia

l
ij, ði, j = 1, 2,⋯,

NÞ: ϕiðuiðtÞÞ = ½ϕi1ðui1ðtÞÞ, ϕi2ðui2ðtÞÞ,⋯,ϕinðuinðtÞÞ�Tðϕið0Þ
= 0Þ is the control input. ϕikðuikðtÞÞ is in a sector ½puikðtÞ,
quikðtÞ�, where p and q are two positive numbers and satisfy
p ≤ ϕikðuikðtÞÞ/uikðtÞ ≤ q when uikðtÞ ≠ 0. The sector nonlin-
ear input is shown in Figure 1.

Definition 1 (see [15]). For the complex dynamic networks
(1) and (2), if Eq. (3) holds, the complex network (1) and
(2) will realize function projective synchronization when

lim
t⟶∞

ei tð Þk k = lim
t⟶∞

yi tð Þ − h tð Þxi tð Þk k = 0, i = 1, 2,⋯,N:

ð3Þ

where eiðtÞ = ðei1ðtÞ, ei2ðtÞ,⋯, einðtÞÞT, i = 1, 2,⋯,N , k⋅k
denotes the Euclidean norm of a vector. hðtÞ ≠ 0 is function
scaling factor, which is a continuously differentiable and
bounded function.

Assumption 2. External disturbances dvi ðtÞ and dsiðtÞ are
bounded, and there exist positive constants αvi , αsi , such that
jdvi ðtÞj ≤ αvi , jdsiðtÞj ≤ αsi :

Corollary 3. Because hðtÞ is a continuously differentiable and
bounded function, there exists a positive constant ℏ and sat-
isfies jhðtÞj ≤ ℏ. Under Assumption 2, there exists a positive
constant αi ≥ αsi + ℏαwi , such that

dsi tð Þj − h tð Þdvi tð Þj ≤ dsi tð Þj j + h tð Þdvi tð Þj j
≤ dsi tð Þ + h tð Þj jj j dvi tð Þj j
≤ αsi + ℏαvi ≤ αi:

ð4Þ

Assumption 4. The time-varying coupling strength clðtÞ is
bounded, and there exists a positive constant c, such that

cl tð Þj j ≤ c: ð5Þ

Assumption 5. The time-varying delay τlðtÞ, l = 0, 1,⋯,m
− 1 is a continuously differentiable function and satisfies 0
≤ _τlðtÞ ≤ ε < 1, so it is easy to get

1 − _τl tð Þ
2 1 − εð Þ ≥

1 − ε

2 1 − εð Þ =
1
2
, ð6Þ

where 0 < ε < 1 is positive constant. This assumption is still
satisfied if τlðtÞ is zero or some other constants.

Lemma 6 (see [9]). For any vectors X, Y ∈ Rn and a positive
definite matrix Q ∈ Rn×n (Rn denotes the n-dimensional vector
space on the real number field R, Rn×n denotes the n × n order
matrix on the real number field R), the following matrix
inequality holds:2XTQY ≤ XTQQTX + YTY .

Proof. Let A = ða1ðtÞ, a2ðtÞ,⋯, anðtÞÞT, B = ðb1ðtÞ, b2ðtÞ,⋯,
bnðtÞÞT:

It is easy to get ATB, BTA ∈ R and ATB = BTA, ATA = a21
+ a22 +⋯ + a2n, BTB = b21 + b22 +⋯+b2n, ATB = BTA = a1 × b1
+ a2 × b2+⋯+an × bn:

Because a21 + a22 +⋯ + a2n + b21 + b22 +⋯+b2n − 2 × ða1 ×
b1 + a2 × b2+⋯+an × bnÞ = ða1 − b1Þ2 + ða2 − b2Þ2+⋯+
ðan − bnÞ2 ≥ 0,then, a21 + a22 +⋯ + a2n + b21 + b22 +⋯+b2n ≥ 2
× ða1 × b1 + a2 × b2+⋯+an × bnÞ, i.e., ATA + BTB ≥ 2ATB:

Let A =QTX, B = Y , then, we can get 2XTQY ≤ XTQQT

X + YTY :
This completes the proof.

3. Controller Design

To realize function projective synchronization, the control-
ler and parameter adaptive laws are designed as follows:

uik tð Þ = −γ
��

gik yi tð Þð Þ − h tð Þf ik xi tð Þð Þ − _h tð Þxik tð Þ
��� ���

+ Gik yi tð Þð Þbη i − h tð ÞFik xi tð Þð Þbθ i

��� ��� + 1
γ
bν eik tð Þj j

�bϖ
+ bψ ik

i
sgn eik tð Þð Þ, i = 1, 2,⋯,N k = 1, 2,⋯, n:

ð7Þ

_bθ i = −FT
i xi tð Þð Þh tð Þei tð Þ, ð8Þ

_bη i = GT
i yi tð Þð Þei tð Þ, ð9Þ

0

𝜙ik(uik(t))

Slope = q

Slope = p

uik(t)

Figure 1: The nonlinear input ϕikðuikðtÞÞ within the sector.
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_bϖ = 〠
N

i=1
eTi tð Þ�� �� gi yi tð Þð Þ − h tð Þf i xi tð Þð Þ − _h tð Þxi tð Þ

��� ���h
+ Gi yi tð Þð Þbη i − h tð ÞFi xi tð Þð Þbθ i

��� ��� + bνei tð Þi,
ð10Þ

_bψ i = ei tð Þj j, ð11Þ

_bν = 〠
N

i=1
eTi tð Þei tð Þ, ð12Þ

where γ, ν are positive constants and satisfy γ > 1, ν > 0:ϖ
= 1/p > 0, ψi = αi/p > 0:bϖ , bψ i, bθ i, bη i, bν is the estimated
parameter for ϖ, ψi, θi, ηi, ν, respectively. Fikð⋅Þ, Gikð⋅Þ ∈
R1×w are the kth row of the function matrices Fið⋅Þ,Gið⋅Þ ∈
Rn×w.

Remark 7. Let uikðtÞ = −γμik sgn ðeikðtÞÞ, then, μik = ðjgikðyi
ðtÞÞ − hðtÞf ikðxiðtÞÞ − _hðtÞxikðtÞj + jGikðyiðtÞÞbη i − hðtÞFikðxið
tÞÞbθ ij + ð1/γÞbνjeikðtÞjÞbϖ + bψ ik:

Because γ > 1, ν > 0, ϖ = 1/p > 0, ψi = αi/p > 0, we can
getμik > 0.

Lemma 8 (see [40]). Let uikðtÞ = −γμik sgn ðeikðtÞÞ, μik > 0,
we can get ∑N

i=1eikðtÞϕikðuikðtÞÞ ≤ ∑N
i=1 − pγμikjeikðtÞj, i.e., eTi

ðtÞϕiðuiðtÞÞ ≤ −piγμi
T jeiðtÞj:

Proof. It can be known from p ≤ ϕikðuikðtÞÞ/uikðtÞ ≤ q that
pu2ikðtÞ ≤ uikðtÞϕikðuikðtÞÞ ≤ qu2ikðtÞ:

When eikðtÞ = 0, the equation obviously holds, that is,
eikðtÞϕikðuikðtÞÞ = −pγμikjeikðtÞj:

When eikðtÞ ≠ 0, substituting uikðtÞ = −γμik sgn ðeikðtÞÞ
into pu2ikðtÞ ≤ uikðtÞϕikðuikðtÞÞ ≤ qu2ikðtÞ, we can get pγ2μ2ik
sgn2ðeikðtÞÞ ≤ −γμik sgn ðeikðtÞÞϕikðuikðtÞÞ:

Using jeikðtÞj/eikðtÞ instead of sgn ðeikðtÞÞ, we can get p
γ2μ2ikjeikðtÞjjeikðtÞj/eikðtÞeikðtÞ≤−γμikϕikðμikðtÞÞjeikðtÞj/eikðtÞ.

Multiplying both sides of the inequality by eik
2ðtÞ, we can

get pγ2μ2ikjeikðtÞj2 ≤ −γμikjeikðtÞjeikðtÞϕikðuikðtÞÞ: Dividing
both sides by γμikjeikðtÞj, we can get eikðtÞϕikðuikðtÞÞ ≤ −p
γμikjeikðtÞj:

It is easy to get∑N
i=1eikðtÞϕikðuikðtÞÞ ≤∑N

i=1 − pγμikjeikðtÞj,
then, eTi ðtÞϕiðuiðtÞÞ ≤ −piγμi

TjeiðtÞj:
This completes the proof.

Theorem 9. If Assumptions 2–5 are satisfied, the drive system
(1) and the response system (2) can realize function projective
synchronization with the controller (7) and adaptive laws
(8)–(12).

Proof. From Definition 1, we have the error term:

ei tð Þ = yi tð Þ − h tð Þxi tð Þ: ð13Þ

The time derivative of eiðtÞ is

_ei tð Þ = _yi tð Þ − h tð Þ _xi tð Þ − _h tð Þxi tð Þ

= gi yi tð Þð Þ + Gi yi tð Þð Þηi + 〠
m−1

l=0
cl tð Þ〠

N

j=1
alijΓly j t − τl tð Þð Þ

+ dsi tð Þ + ϕi ui tð Þð Þ − h tð Þf i xi tð Þð Þ − h tð ÞFi xi tð Þð Þθi

− h tð Þ 〠
m−1

l=0
cl tð Þ〠

N

j=1
alijΓlxj t − τl tð Þð Þ

− h tð Þdvi tð Þ − _h tð Þxi tð Þ:
ð14Þ

Choosing Lyapunov function as

V tð Þ = 1
2p

〠
N

i=1
eTi tð Þei tð Þ + p bψ i − ψi

� �2h i

+
1
2
bϖ − ϖ
� �2 + 1

2p
bν − ν∗ð Þ2

+
1
2p

〠
N

i=1

bθ i − θi
� �2

+ 〠
N

i=1
bη i − ηið Þ2

"

+
1

1 − εð Þ
ðt
t−τl tð Þ

〠
m−1

l=1
〠
N

i=1
eTi δð Þei δð Þdδ

#
,

ð15Þ

where bϖ , bψ i is the estimated parameter for ϖ, ψi. ν
∗ is the

positive constant to be designed.
Taking the derivative of the Lyapunov function, we can

get

_V tð Þ = 〠
N

i=1

1
p
eTi tð Þ_ei tð Þ + bψ i − ψi

� �T _bψ i

� 	
+ bϖ − ϖ
� � _bϖ

+
1
p
bν − ν∗ð Þ _bν +

1
p
〠
N

i=1

bθ i − θi
� �T _bθ i

+
1
p
〠
N

i=1
bη i − ηið ÞT _bη i +

∑m−1
l=1 ∑N

i=1e
T
i tð Þei tð Þ

2p 1 − εð Þ

−
1 − _τl tð Þ
2p 1 − εð Þ 〠

m−1

l=1
〠
N

i=1
eTi t − τl tð Þð Þei t − τl tð Þð Þ:

ð16Þ

Substituting (8), (9), and (14) into (16), we can get

_V tð Þ = 1
p
〠
N

i=1
eTi tð Þ gi yi tð Þð Þð


+ Gi yi tð Þð Þηi + dsi tð Þ

+ 〠
m−1

l=0
cl tð Þ〠

N

j=1
alijΓly j t − τl tð Þð Þ + ϕi ui tð Þð Þ

− h tð Þf i xi tð Þð Þ − h tð ÞFi xi tð Þð Þθi − h tð Þ 〠
m−1

l=0

� cl tð Þ〠
N

j=1
alijΓlxj t − τl tð Þð Þ−h tð Þdvi tð Þ − _h tð Þxi tð Þ

�i

4 Advances in Mathematical Physics



+ 〠
N

i=1
bψ i − ψi

� �T _bψ i

h i
+ bϖ − ϖ
� � _bϖ +

1
p
bν − ν∗ð Þ _bν

−
1
p
〠
N

i=1

bθ i − θi
� �T

FT
i xi tð Þð Þh tð Þei tð Þ

+
1
p
〠
N

i=1
bη i − ηið ÞTGT

i yi tð Þð Þei tð Þ

+
1

2p 1 − εð Þ 〠
m−1

l=1
〠
N

i=1
eTi tð Þei tð Þ

−
1 − _τl tð Þ
2p 1 − εð Þ 〠

m−1

l=1
〠
N

i=1
eTi t − τl tð Þð Þei t − τl tð Þð Þ:

ð17Þ

Because ∑N
i=1e

T
i ðtÞhðtÞFiðxiðtÞÞθi =∑N

i=1θi
TFi

TðxiðtÞÞhðtÞ
eiðtÞ,∑N

i=1e
T
i ðtÞGiðyiðtÞÞηi =∑N

i=1η
TGi

TðyiðtÞÞeiðtÞ, we can get

−
1
p
〠
N

i=1
eTi tð Þh tð ÞFi xi tð Þð Þθi

−
1
p
〠
N

i=1

bθ i − θi
� �T

FT
i xi tð Þð Þh tð Þei tð Þ

= −
1
p
〠
N

i=1

bθ i

T
FT
i xi tð Þð Þh tð Þei tð Þ,

ð18Þ

1
p
〠
N

i=1
eTi tð ÞGi yi tð Þð Þηi +

1
p
〠
N

i=1
bη i − ηið ÞTGT

i yi tð Þð Þei tð Þ

=
1
p
〠
N

i=1
bη iTGT

i yi tð Þð Þei tð Þ,
ð19Þ

so

_V tð Þ = 1
p
〠
N

i=1
eTi tð Þ gi yi tð Þð Þð


+ 〠
m−1

l=0
cl tð Þ〠

N

j=1
alijΓly j t − τl tð Þð Þ

+ ϕi ui tð Þð Þ + dsi tð Þ − h tð Þf i xi tð Þð Þ − h tð Þ 〠
m−1

l=0
cl tð Þ

�〠
N

j=1
alijΓlxj t − τl tð Þð Þ−h tð Þdwi tð Þ − _h tð Þxi tð Þ

�i

+ 〠
N

i=1
bψ i − ψi

� �T _bψ i

h i
+ bϖ − ϖ
� � _bϖ

−
1
p
〠
N

i=1

bθ i

T
FT
i xi tð Þð Þh tð Þei tð Þ +

1
p
〠
N

i=1
bη i

TGT
i yi tð Þð Þei tð Þ

+
1
p
bν − ν∗ð Þ _bν +

1
2p 1 − εð Þ 〠

m−1

l=1
〠
N

i=1
eTi tð Þei tð Þ

−
1 − _τl tð Þ
2p 1 − εð Þ 〠

m−1

l=1
〠
N

i=1
eTi t − τl tð Þð Þei t − τl tð Þð Þ:

ð20Þ

Substituting Lemma 8 and Corollary 3 into (20), we can
get

_V tð Þ ≤ 1
p
〠
N

i=1

h
eTi tð Þ�� �� gi yi tð Þð Þjð − h tð Þf i xi tð Þð Þ− _h tð Þxi tð Þ

��� + αiÞ

− γμi
T ei tð Þj j

i
+ 〠

N

i=1
bψ i − ψi

� �T _bψ i

h i
+ bϖ − ϖ
� � _bϖ

−
1
p
〠
N

i=1

bθ i

T
FT
i xi tð Þð Þh tð Þei tð Þ +

1
p
〠
N

i=1
bη i

TGT
i yi tð Þð Þei tð Þ

+
1
p
bν − ν∗ð Þ _bν +

1
p
〠
N

i=1

"
eTi tð Þ clð 〠

N

j=1
a0ijΓ0ej tð Þ

+ cl 〠
m−1

l=1
〠
N

j=1
alijΓlej t − τl tð Þð Þ

#
+

1
2p 1 − εð Þ 〠

m−1

l=1
〠
N

i=1

� eTi tð Þei tð Þ −
1 − _τl tð Þ
2p 1 − εð Þ 〠

m−1

l=1
〠
N

i=1
eTi t − τl tð Þð Þei t − τl tð Þð Þ:

ð21Þ

Substituting ψi = αi/p and ϖ = 1/p into (21), because

bη iTGi
TðyiÞei − bθ i

T
Fi

TðxiÞhei = ðbη i
TGi

TðyiÞ − bθ i

T
Fi

TðxiÞhÞei
≤ jbη i

TGi
TðyiÞ − bθ i

T
Fi

TðxiÞhjjeij = jbη i
TGi

TðyiÞjeij − bθ i

T
Fi

Tðxi
Þhjeijj,where jeij = ðjei1j, jei2j,⋯, jeinjÞT, we can get

_V tð Þ ≤ 〠
N

i=1

h
ϖ eTi tð Þ�� �� gi yi tð Þð Þ − h tð Þf i xi tð Þð Þ − _h tð Þxi tð Þ

��� ���
+ eTi tð Þ�� ��ψi − γμi

T ei tð Þj j + bψ i − ψi

� �T ei tð Þj j
i

+ bϖ − ϖ
� � _bϖ + ϖi 〠

N

i=1
bη iTGi

T yið Þ eij j − bθ iTFi
T xið Þh eij j

��� ���
+ ϖ bν − ν∗ð Þ _bν + 〠

N

i=1

"
ϖie

T
i tð Þ

 
cl 〠

N

j=1
a0ijΓ0ej tð Þ

+ cl 〠
m−1

l=1
〠
N

j=1
alijΓlej t − τl tð Þð Þ

!
+

ϖi

2 1 − εð Þ

� 〠
m−1

l=1
〠
N

i=1
eTi tð Þei tð Þ −

1 − _τl tð Þ
2 1 − εð Þ

� ϖi 〠
m−1

l=1
〠
N

i=1
eTi t − τl tð Þð Þei t − τl tð Þð Þ:

ð22Þ

Substituting (10) and (11) into (22), because ∑N
i=1jeTiðtÞ

jhFiðxÞbθ i = bθTFTðxÞhjej,∑N
i=1jeTiðtÞjGiðyÞbη i = bηTGTðyÞjej,

then, the above formula can be simplified as
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_V tð Þ ≤ 〠
N

i=1

�
eTi tð Þ�� ��ψi − γ eTi tð Þ�� ���� gi yi tð Þð Þ − h tð Þf i xi tð Þð Þj

− _h tð Þxi tð Þ
��� + Gi yð Þbη i − h tð ÞFi xð Þbθ i

��� ���
+
1
γ
bνei tð Þ

�bϖ + bψ i

	
+ bψ i − ψi

� �T ei tð Þj j
	

+ bϖ〠
N

i=1
eTi tð Þ�� ��h gi yi tð Þð Þ − h tð Þf i xi tð Þð Þ − _h tð Þxi tð Þ

��� ���
+ Gi yð Þbη i − h tð ÞFi xð Þbθ i��� ���i + 〠

N

i=1

"
ϖeTi tð Þ clð 〠

N

j=1
a0ijΓ0ej

� tð Þ + cl 〠
m−1

l=1
〠
N

j=1
alijΓlej t − τl tð Þð Þ

#
− ϖν∗ 〠

N

i=1
eTi tð Þei tð Þ

+
ϖ

2 1 − εð Þ 〠
m−1

l=1
〠
N

i=1
eTi tð Þei tð Þ −

1 − _τl tð Þ
2 1 − εð Þ

� ϖ 〠
m−1

l=1
〠
N

i=1
eTi t − τl tð Þð Þei t − τl tð Þð Þ:

ð23Þ

In order to simplify the proof process, _VðtÞ is decom-
posed into two parts _V1ðtÞ and _V2ðtÞ:

_V1 tð Þ = 〠
N

i=1

1
p
eTi tð Þ

�  
cl 〠

N

j=1
a0ijΓ0ej tð Þ

+ cl 〠
m−1

l=1
〠
N

j=1
alijΓlej t − τl tð Þð Þ

!

+
1

2p 1 − εð Þ 〠
m−1

l=1
〠
N

i=1
eTi tð Þei tð Þ

−
1 − _τl tð Þ
2p 1 − εð Þ 〠

m−1

l=1
〠
N

i=1
eTi t − τl tð Þð Þei t − τl tð Þð Þ

−
ν∗

p
〠
N

i=1
eTi tð Þei tð Þ,

ð24Þ

_V2 tð Þ = 〠
N

i=1

h
eTi tð Þ�� ��ψi − γ eTi tð Þ�� ��h� gi yi tð Þð Þ − h tð Þf i xi tð Þð Þj

− _h tð Þxi tð Þ
��� + Gi yð Þbη i − h tð ÞFi xð Þbθ i��� ����bϖ + bψ i

i

+ bψ i
T ei tð Þj j

i
+ bϖ〠

N

i=1
eTi tð Þ�� ��h gi yi tð Þð Þ − h tð Þf i xi tð Þð Þj

− _h tð Þxi tð Þ
��� + Gi yð Þbη i − h tð ÞFi xð Þbθ i��� ���i:

ð25Þ

Let eðtÞ = ðeT1 ðtÞ, eT2 ðtÞ,⋯, eTNðtÞÞT ∈ RN×1, B0 = ðA0 ⊗ Γ0
Þ, B1 = ðA1 ⊗ Γ1Þ,⋯, Bl = ðAl ⊗ ΓlÞ, where ⊗ represents the
Kronecker product, then, we can get

_V1 tð Þ ≤ 1
p

cle
T tð ÞB0e tð Þ�

+ cl 〠
m−1

l=1
eT tð ÞBle t − τl tð Þð Þ

+
1

2 1 − εð Þ 〠
m−1

l=1
eT tð Þe tð Þ − 1

2
〠
m−1

l=1
eT t − τl tð Þð Þ

� e t − τl tð Þð Þ−ν∗eT tð Þe tð Þ�:
ð26Þ

Based on Lemma 6, it is

cle
T tð ÞBle t − τl tð Þð Þ ≤ 1

2
c2l e

T tð ÞBlB
T
l e tð Þ

+
1
2
eT t − τl tð Þð Þe t − τl tð Þð Þ,

ð27Þ

so we can get

_V1 tð Þ ≤ 1
p

eT
�

tð Þ clB0 +
1
2
c2l 〠

m−1

l=1
BlB

T
l

" #
e tð Þ

+ 〠
m−1

l=1

1
2 1 − εð Þ e

T tð Þe tð Þ − ν∗eT tð Þe tð ÞÞ

≤
1
p

λmax½ð clB0 +
1
2
c2l 〠

m−1

l=1
BlB

T
l

 !

+
m − 1
2 1 − εð Þ − ν∗�eT tð Þe tð ÞÞ:

ð28Þ

Because p > 0, if ν∗ ≥ λmaxðclB0 + 1/2c2l ∑
m−1
l=1 BlB

T
l Þ +m

− 1/2ð1 − εÞ, we can get _V1ðtÞ ≤ 0, where λmaxðQÞ is the
maximum eigenvalue of the matrix Q.

Making a simple equation transformation to _V2ðtÞ, we
can get

_V2 tð Þ ≤ 〠
N

i=1
1 − γð Þ eTi tð Þ�� ��h� gi yi tð Þð Þ − h tð Þf i xi tð Þð Þj

− _h tð Þxi tð Þ
��� + Gi yð Þbη i − h tð ÞFi xð Þbθ i��� ����bϖ + bψ i

i

≤ 〠
N

i=1
1 − γð Þ eTi tð Þ�� ��μi:

ð29Þ

Because γ > 1, ϖ = 1/p > 0, ψi = αi/p > 0, then

_V2 tð Þ ≤ 〠
N

i=1
1 − γð Þ eTi tð Þ�� ��μi ≤ 0: ð30Þ

Based on the above analysis, we can get that _VðtÞ ≤
_V1ðtÞ + _V2ðtÞ ≤ 0 if ν∗ ≥ λmaxðclB0 + 1/2c2l ∑

m−1
l=1 BlB

T
l Þ +m

− 1/2ð1 − εÞ: According to Lyapunov stability theory, we
can obtain eiðtÞ⟶ 0 as t⟶∞, which means that the
function projective synchronization between the drive sys-
tem (1) and the response system (2) is achieved. This com-
pletes the proof.
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Remark 10. In the proof of Theorem 9, based on Lyapunov
stability theory and inequality transformation method, by
introducing Lemma 6 and 8 and some reasonable Assump-
tions, the controller is designed flexibly without the bound-
ary value (p and q) of the sector nonlinear input and the
delay term τlðtÞ.

Remark 11. When τlðtÞ, l = 0, 1, 2, ⋯ , m − 1 is constant or
τ0ðtÞ = τ1ðtÞ =⋯ = τm−1ðtÞ = τðtÞ, the multiple time-
varying delay couplings are transformed into constant
time-delay coupling or single time-varying delay coupling.
When τlðtÞ, l = 0, 1,⋯, m − 1 is constant or τ0ðtÞ = τ1ðtÞ
=⋯ = τm−1ðtÞ = τðtÞ, Assumption 5 is also satisfied, and
the control method in this article is also applicable to con-
stant time-delay coupling or single time-varying delay
coupling.

Remark 12. If hðtÞ is a constant, the function projection syn-
chronization is transformed into the projection synchroniza-
tion. In particular, when hðtÞ = 1 or hðtÞ = −1, the function
projection synchronization turns into complete synchroni-
zation or antisynchronization.

4. Numerical Simulation

In order to verify the correctness of the theoretical analysis,
we select communication network with chaotic nodes as
simulation examples.

_xi1 tð Þ
_xi2 tð Þ
_xi3 tð Þ

2
6664

3
7775 =

0

−xi1 tð Þxi3 tð Þ − xi2 tð Þ
xi1 tð Þxi2 tð Þ

2
6664

3
7775

+

−xi1 tð Þ + xi2 tð Þ 0 0

0 xi1 tð Þ 0

0 0 −xi3 tð Þ

2
6664

3
7775

×

θi1

θi2

θi3

2
6664

3
7775 +

dvi1 tð Þ
dvi2 tð Þ
dvi3 tð Þ

2
6664

3
7775 + c0 tð Þ〠

4

j=1
a0ijΓ0xj tð Þ

+ c1 tð Þ〠
4

j=1
a1ijΓ1xj t − τ1 tð Þð Þ

+ c2 tð Þ〠
4

j=1
a2ijΓ2xj t − τ2 tð Þð Þ: i = 1, 2, 3, 4:

ð31Þ

Example 1. Considering a communication network with N
= 4, n = 3, the drive system is composed of four Lorenz cha-
otic systems with two different time-varying delay couplings.

The response system is composed of four Chen chaotic
systems with two different time-varying delay couplings.

_yi1 tð Þ
_yi2 tð Þ
_yi3 tð Þ

2
6664

3
7775 =

0

−yi1 tð Þyi3 tð Þ
yi1 tð Þyi2 tð Þ

2
6664

3
7775 +

yi2 tð Þ − yi1 tð Þ 0 0

−yi1 tð Þ yi2 tð Þ + yi1 tð Þ 0

0 0 −yi3 tð Þ

2
6664

3
7775

×

ηi1

ηi2

ηi3

2
6664

3
7775 +

dsi1 tð Þ
dsi2 tð Þ
dsi3 tð Þ

2
6664

3
7775 +

ϕi1 ui1 tð Þð Þ
ϕi2 ui2 tð Þð Þ
ϕi3 ui3 tð Þð Þ

2
6664

3
7775

+ c0 tð Þ〠
4

j=1
a0ijΓ0yj tð Þ + c1 tð Þ〠

4

j=1
a1ijΓ1yj t − τ1 tð Þð Þ

+ c2 tð Þ〠
4

j=1
a2ijΓ2yj t − τ2 tð Þð Þ:i = 1, 2, 3, 4:

ð32Þ

In MATLAB numerical simulation, set c0 = c1 = c2 = 0:2
, τ1ðtÞ = t/3 + t, τ2ðtÞ = et/3 + et , diðtÞ = 0:2 cos t, Γ0 = Γ1 =
Γ2 = I3×3, hðtÞ = 2 cos 2t: The nonlinear input is ϕiðuiðtÞÞ =
½ϕi1ðui1ðtÞÞ, ϕi2ðui2ðtÞÞ, ϕi3ðui3ðtÞÞ�T = ½ð0:3 + 0:2 cos ðui1ðtÞ
ÞÞui1ðtÞ, ð0:6 + 0:2 sin ðui2ðtÞÞÞui2ðtÞ, ð0:4 − 0:2 cos ðui3ðtÞÞÞ
ui3ðtÞ�T : The topological structure matrices A0, A1, A2 are
as follows:

A0 =

−2 1 0 1

0 −2 1 1

1 1 −2 0

1 0 1 −2

0
BBBBBB@

1
CCCCCCA
,

A1 =

−1 0 0 1

0 −1 1 0

0 0 −1 1

0 1 0 −1

0
BBBBBB@

1
CCCCCCA
,

A2 =

−1 0 1 0

0 −2 1 1

1 1 −2 0

0 1 0 −1

0
BBBBBB@

1
CCCCCCA
:

ð33Þ

And the topology of the driver network and response
network is shown in Figure 2.

1 2

43

(a) A0

1 2

43

(b) A1

1 2

43

(c) A2

Figure 2: Topology of the multilink complex networks in Example
1 with four nodes and three subnetworks.
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Figure 3: The time evolution of synchronization between y1i and hðtÞx1i.
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Figure 5: The time evolution of synchronization between y3i and hðtÞx3i.
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Figure 4: The time evolution of synchronization between y2i and hðtÞx2i.
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The MATLAB simulation results are shown in
Figures 3–6. It displays that the error signal between the
drive system and the response system can stably approach
to zero with the designed adaptive controller, that is, the
function projection synchronization of the complex
dynamic networks is realized.

_xi1 tð Þ
_xi2 tð Þ
_xi3 tð Þ
_xi4 tð Þ

2
6666664

3
7777775
=

0

−xi1 tð Þxi3 tð Þ − xi2 tð Þ
xi1 tð Þxi2 tð Þ
−xi1 tð Þ

2
6666664

3
7777775

+

−xi1 tð Þ + xi2 tð Þ 0 xi4 tð Þ 0

0 xi1 tð Þ 0 0

0 0 0 −xi3 tð Þ
−xi4 tð Þ 0 0 0

2
6666664

3
7777775

×

θi1

θi2

θi3

θi4

2
6666664

3
7777775
+

dvi1 tð Þ
dvi2 tð Þ
dvi3 tð Þ
dvi4 tð Þ

2
6666664

3
7777775
+ c0 tð Þ〠

8

j=1
a0ijΓ0xj tð Þ

+ c1 tð Þ〠
8

j=1
a1ijΓ1xj t − τ1 tð Þð Þ

+ c2 tð Þ〠
8

j=1
a2ijΓ2xj t − τ2 tð Þð Þ

+ c3 tð Þ〠
8

j=1
a3ijΓ3xj t − τ3 tð Þð Þ: i = 1, 2,⋯, 8:

ð34Þ

Example 2. Considering a communication network with N
= 8, n = 4, the drive system is composed of eight LS
hyperchaotic systems with three different time-varying delay
couplings.

The response system is composed of four hyperchaotic
systems with three different time-varying delay couplings.

_yi1 tð Þ
_yi2 tð Þ
_yi3 tð Þ
_yi4 tð Þ

2
6666664

3
7777775
=

0

−yi1 tð Þyi3 tð Þ + yi4 tð Þ
yi1 tð Þyi2 tð Þ

0

2
6666664

3
7777775

+

yi2 tð Þ − yi1 tð Þ 0 0 0

0 yi1 tð Þ 0 0

0 0 −yi3 tð Þ 0

0 0 0 −yi1 tð Þ

2
6666664

3
7777775

×

ηi1

ηi2

ηi3

ηi4

2
6666664

3
7777775
+

dsi1 tð Þ
dsi2 tð Þ
dsi3 tð Þ
dsi4 tð Þ

2
6666664

3
7777775
+

ϕi1 ui1 tð Þð Þ
ϕi2 ui2 tð Þð Þ
ϕi3 ui3 tð Þð Þ
ϕi4 ui4 tð Þð Þ

2
6666664

3
7777775

+ c0 tð Þ〠
8

j=1
a0ijΓ0yj tð Þ + c1 tð Þ〠

8

j=1
a1ijΓ1yj t − τ1 tð Þð Þ

+ c2 tð Þ〠
8

j=1
a2ijΓ2yj t − τ2 tð Þð Þ

+ c3 tð Þ〠
8

j=1
a3ijΓ3yj t − τ3 tð Þð Þi = 1, 2,⋯, 8:

ð35Þ
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Figure 6: The time evolution of synchronization between y4i and hðtÞx4i.
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To simplify numerical simulation, set c0 = c1 = c2 = c3 =
0:1, τ1ðtÞ = t/3 + t, τ2ðtÞ = et/3 + et , τ3ðtÞ = et/6 + et , diðtÞ =
0:2 sin t, Γ0 = Γ1 = Γ2 = I4×4, hðtÞ = 2 sin 2t: The nonlinear
input is ϕiðuiðtÞÞ = ½ϕi1ðui1ðtÞÞ, ϕi2ðui2ðtÞÞ, ϕi3ðui3ðtÞÞ, ϕi4 ð

ui4ðtÞÞ�T = ½ð0:3 + 0:2 cos ðui1ðtÞÞÞui1ðtÞ, ð0:6 + 0:2 sin ðui2ðt
ÞÞÞui2ðtÞ, ð0:4 − 0:2 cos ðui3ðtÞÞÞui3ðtÞ, ð0:4 + 0:2 sin ðui4ðtÞÞ
Þui4ðtÞ�T : The topological structure matrices A0, A1, A2,
A3 are as follows:
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Figure 9: The time evolution of synchronization between y2i and hðtÞx2i.
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Figure 8: The time evolution of synchronization between y1i and hðtÞx1i.
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Figure 7: Topology of the multilink complex networks in Example 2 with eight nodes and four subnetworks.
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Figure 15: The time evolution of synchronization between y8i and hðtÞx8i.
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Figure 13: The time evolution of synchronization between y6i and hðtÞx6i.
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And the topology of the driver network and response
network is shown in Figure 7.

The MATLAB simulation results are shown in
Figures 8–15. The function projection synchronization can
still be achieved when the number of nodes and the system
dimension of the complex network are increased, which fur-
ther verifies the correctness of the theoretical analysis.

5. Conclusion

In this paper, the function projective synchronization of
complex dynamic networks with unknown sector nonlinear
input, multiple time-varying delay couplings, model uncer-
tainty, and external interferences is studied. Based on Lyapu-
nov stability theory, adaptive control theory, and inequality
theory, the robust adaptive controller is formulated to make
the drive and response systems synchronize by the function
scaling factor. The controller designed in this paper can
effectively overcome the effects of unknown sector input
and multiple time-varying delays, so it is more general and
easier to implement. Our future research work will focus
on how to realize the complex network synchronization with
other forms of input constraints and how to apply the
research results of this paper to the fields of information
security.
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